Home | Help | Sitemap | |||||||||
Архив автоновостей |
3. Узлы и элементы ЭСУДВ этой части мы более подробно опишем работу элементов системы, связанные с ними возможные неисправности и методы их диагностики. К неисправностям элементов ЭСУД можно отнести и нарушения в цепях соединений этих элементов в системе. Зачастую плохой контакт в соединительных разъемах или поврежденном проводе может быть принят за неисправность работы узла или датчика системы. С описанием ЭСУД и ее составных элементов можно познакомиться в руководствах по диагностике и ремонту ЭСУД для автомобилей ВАЗ. 1. Лампа «Проверь двигатель» Лампа «Проверь двигатель» располагается на панели приборов автомобиля и должна загораться после включения замка зажигания – это является признаком включения блока управления. Характерный щелчок должен сопровождать срабатывание главного реле. Через главное реле подается напряжение на основные элементы ЭСУД. После запуска двигателя, когда обороты двигателя превысили 1000 об/мин, лампа гаснет – ее выключает блок управления. Система самодиагностики блока управления определяет неисправности в работе ЭСУД. О наличие любой неисправности блок управления сигнализирует водителю с помощью лампы «Проверь двигатель» - лампа загорается примерно через 40 сек после определения неисправности. Включенная лампа при работающем двигателе не означает, что неисправность (диагностируемая текущая ошибка) имеет место в данный момент. Лампа может гореть, предупреждая водителя о том, что ошибка была определена ранее, и код ее занесен в память блока управления (сохраненная неисправность). Если ездовые качества автомобиля резко не ухудшаются, скорее всего, включение лампы говорит о сохраненной неисправности. Необходимо проверить код сохраненной неисправности и провести проверки в работе системы. Опыт показывает, что первое появление неисправности элемента системы или его цепей управления говорит о возможном отказе этого узла в ближайшее время. 2. Узел дроссельной заслонки На первый взгляд, узел дроссельной заслонки представляет собой несложное механическое устройство. На нем располагается датчик положения дроссельной заслонки и шаговый мотор (регулятор ХХ). В комплексе этот узел должен соответствовать строгим техническим условиям. Отклонение характеристик узла дроссельной заслонки от этих ТУ существенно влияет на поведение двигателя в переходных режимах: разгон, торможение, движение накатом, работа на режиме холостого хода, запуск двигателя. Исправность датчика положения дроссельной заслонки и шагового двигателя не гарантируют правильную работу системы при некачественном исполнении механики и конструкции дроссельной заслонки. Узел дроссельной заслонки является в системе устройством, через которое водитель задает требуемую скорость движения автомобиля. Нажимая на педаль дроссельной заслонки (газа), он изменяет пропускную способность впускного коллектора для подачи воздуха в двигатель. Вторая задача дроссельного узла заключается в поддержании байпасного канала (канал ХХ) в таком режиме, чтобы при отказе водителя от управления дросселем (выключение КПП, торможение, движение накатом - во всех этих случаях дроссельная заслонка закрыта) этот канал обеспечивал необходимое наполнение двигателя воздухом для поддержания заданных системой оборотов вращения коленчатого вала. Этот режим реализуется с помощью шагового мотора, установленного в узле дроссельной заслонки. Некачественное исполнение узла дроссельной заслонки (несоответствие ТУ), как правило, вызывает следующие неисправности в работе:
3. Датчик положения дросселя Располагается на узле дроссельной заслонки и определяет степень открытия дроссельной заслонки. Система использует показания датчика дроссельной заслонки для следующих режимов работы:
Нужно понимать, что система пользуется показаниями датчика положения дросселя не только для определения режима работы (холостой ход, мощностной режим, продувка двигателя при запуске, работа в резервных режимах), но и проводит коррекцию подачи топлива в двигатель в зависимости от скорости изменения положения дроссельной заслонки (в аналогии с карбюратором – ускорительный насос). Ресурс работы датчиков российских производителей оставляет желать лучшего. Стирание резистивного слоя на внутренних контактах датчика может приводить к ряду сбоев в работе системы. Переход на бесконтактный датчик поможет выправить ситуацию. Как правило, показания датчика нарушаются в положениях, где он чаще всего и работает. Это нулевое (или близкое к нему) положение дроссельной заслонки. Характерные сбои в работе системы при неисправном датчике дроссельной заслонки:
Неисправность датчика положения дроссельной заслонки достаточно хорошо определяется системой самодиагностики блока управления. При плохом датчике загорается лампа «Проверь двигатель» и в память блока заносится соответствующий код неисправности. Когда появляется такой код неисправности, а вы не заметили сбоев в работе системы, проверьте крепление датчика и его разъем. И будьте готовы к замене датчика через некоторое время. Если при наличии перечисленных неисправностей система самодиагностики не выдает кода неисправности по датчику дроссельной заслонки, не торопитесь его менять. Признаки, перечисленные выше, скорее всего, вызваны другими причинами. 4. Шаговый мотор (регулятор ХХ) Шаговый мотор установлен в байпасном канале узла дроссельной заслонки. Положение вала шагового мотора определяет проходное сечение байпасного канала, необходимое для устойчивой работы двигателя при закрытой дроссельной заслонке. В системе управления шаговый мотор выполняет несколько основных функций:
Шаговый мотор и называют регулятором холостого хода, но он выполняет лишь перечисленные функции. Заданные обороты холостого хода в пределах ±50 об/мин поддерживаются в основном быстрым контуром управления – регулятором по углу опережения зажигания. Раскачка оборотов в режиме холостого хода зависит именно от этого контура и влияния возмущений в системе топливоподачи. Шаговый мотор определяет медленную составляющую в регулировании, отслеживая режимные переходы системы управления. Выход из строя шагового двигателя приводит к явным сбоям в системе: невозможность работы двигателя на холостом ходу, повышение оборотов ХХ, увеличивающихся по мере прогрева двигателя. Эти неисправности возникают и при неполадках в цепях управления шаговым мотором и могут быть определены при помощи тестера ДСТ-2М, который позволяет задавать положение шагового мотора как параметр блока управления. Выбрав режим управления исполнительными механизмами в тестере, нужно подвигать шаговый мотор с помощью блока управления в ту или иную сторону. Если при этом обороты двигателя не изменяются, расход воздуха остается постоянным, а система определяет постоянное положение шагового мотора, неисправность шагового мотора или цепей его управления очевидна. Проверка шагового мотора с помощью тестера может и не дать результата. Система будет правильно отрабатывать ваши попытки закрыть или открыть байпасный канал. Но при этом при эксплуатации автомобиля останутся зависания оборотов при отключении КПП и заглохания двигателя при движении накатом и невозможность запуска двигателя без помощи дроссельной заслонки. Появление в комплексе этих неисправностей говорит о неисправности шагового двигателя или его цепей управления. И даже при исправных цепях, шаговый мотор может просто неправильно выполнять команды системы управления. Вместо движения вперед отрабатывает движение назад или наоборот. Это можно наблюдать, если снять шаговый мотор и специальным тестером задавать ему движения в разные стороны. Алгоритм управления шагового мотора достаточно сложен, и сбои в его работе могут быть выявлены только специальным тестером, например, ДСТ-6C. Блок управления может выдавать код неисправности шагового мотора, но не всегда это означает, что шаговый мотор или цепи его управления действительно вышли из строя. К сожалению, этот код может появиться и при исправном шаговом моторе. Прежде чем разбираться с шаговым мотором, убедитесь, что заданные обороты холостого хода в системе выставляются правильно по температуре двигателя и режим холостого хода определен в системе (положение дроссельной заслонки 0%). Совет: Если смазывать механическую часть шагового мотора литолом, то он работает значительно лучше и дольше. После смазки плохой шаговый мотор часто восстанавливает свою работоспособность. 5. Датчик температуры охлаждающей жидкости Этот датчик – самый надежный из всех датчиков системы российского производства. По этому датчику система определяет тепловое состояние двигателя и принимает решение о коррекции параметров (обороты ХХ, обогащение подачи топливной смеси, угол опережения зажигания, включение - выключение вентилятора и т.д.). Показатель температуры двигателя на панели приборов автомобиля не имеет отношения к этому датчику, и его показания могут не совпадать с показаниями тестера, поскольку температура в этом случае определяется другим датчиком, установленным в рубашке двигателя, а также зависит от состояния самой панели управления. Выход из строя датчика температуры приводит к целому набору неисправностей в автомобиле, от явной невозможности запустить двигателя до непонятного повышения расхода топлива. Не торопитесь менять датчик температуры, тем более что выход его из строя легко проверяется системой самодиагностики. Неисправности, связанные с датчиком температуры – несвоевременное включение или просто невключение вентилятора (тосол кипит), медленный прогрев двигателя (повышенный расход топлива) – зачастую имеют другие причины: выход из строя термостата, негерметичность системы охлаждения (пробка на расширительном бачке не герметична), плохое качество тосола, неисправность цепей управления вентилятора и т.д. Если отсоединить разъем датчика на работающем двигателе, то система управления перейдет на резервный режим работы по температуре, при котором будет включен вентилятор охлаждения (одна из быстрых проверок цепи управления вентилятором). Если запускать двигатель с отключенным датчиком температуры, то нужно учитывать, что система в этот момент температуру считает нулевой, по мере работы такого двигателя система управления сама выставляет температуру (увеличивает) в зависимости от времени работы, вентилятор при этом будет всегда включен. Пуск горячего или холодного (с температурой ниже 10 градусов) двигателя с отключенным датчиком температуры будет затруднительным. Прежде чем менять датчик температуры, убедитесь в исправности цепей его подключения и правильном соединении разъемов (возможно при размыкании и замыкании разъема погнута ножка в клеммном соединении самого датчика). 6. Датчик массового расхода воздуха Датчик массового расхода воздуха устанавливается на входе воздушного тракта после воздушного фильтра. В процессе работы электронная схема поддерживает постоянный перегрев нити чувствительного элемента датчика на заданном уровне. Чувствительный элемент датчика (нить) охлаждается потоком воздуха, проходящего через двигатель. Электрическая мощность, требуемая для поддержания заданного превышения температуры, и является параметром для определения массового расхода воздуха, проходящего через датчик. Выходным сигналом расходомера служит падение напряжения на прецизионном резисторе, включенном в смежное с нагреваемой нитью плечо измерительного моста. Это напряжение электронный блок управления преобразует в часовой расход воздуха (кг/час). Масса рассчитывается с учетом обратных выбросов воздуха. Обратные выбросы (движение воздуха против всасывания) присутствуют на различных режимах работы двигателя и вызваны поступательными движениями поршней двигателя и его конструктивными характеристиками, определяющими аэродинамические свойства впускного тракта. Из вышесказанного следует, что масса воздуха, проходящего через двигатель, определяется косвенным образом, и непонятно, как учитывается состояние самого воздуха: влажность, содержание кислорода и т.д. А это является существенным фактором для мощностных характеристик топливной смеси. Показания датчика массового расхода являются для системы основным параметром, определяющим топливоподачу и угол опережения зажигания. Алгоритм расчета массового расхода воздуха через двигатель определяется блоком управления синхронно с вращением коленчатого вала (кг/час). Блок рассчитывает цикловое наполнение цилиндра воздухом в соответствии с оборотами двигателя (мг/такт). После этого рассчитывается порция топлива (цикловая подача топлива, мг/такт), которая должна попасть в цилиндр через форсунку к моменту закрытия впускного клапана. Все коррекции циклового наполнения и цикловой подачи по температуре двигателя, динамике дроссельной заслонки, частоте вращения коленчатого вала выполняются программным обеспечением блока управления в соответствии с внутренними настройками для конкретной комплектации системы управления. Время открытия форсунки (мс) определяется в соответствии с заданными параметрами форсунки, корректировкой по напряжению бортовой сети и заданной системой впрыска топлива: одновременный, попарно-параллельный, фазированный. Эта сложная взаимосвязь расчетных и заданных параметров предполагает наличие в составе системы управления элементов (в частности датчика массового расхода), строго определенных комплектацией этой системы. Уход характеристик датчика массового расхода воздуха, подсосы воздуха во впускной тракт после датчика, нестабильность питающего напряжения датчика и т.д. существенно сказываются на работе двигателя. Проблемы, связанные со стабильностью работы на стационарных режимах, динамическими свойствами автомобиля, экономичностью работы могут определяться неправильными показаниями датчика массового расхода. Неполадки в цепи датчика или полный его отказ определяются системой самодиагностики, и соответствующий код неисправности заносится в память. Это самая простая неисправность, и она может быть легко исправлена. Другое дело, когда нет неисправностей в памяти блока управления, а двигатель после запуска глохнет. Снимите разъем с датчика массового расхода, если двигатель после запуска работает на повышенных оборотах (резервный режим работы), замените датчик. Еще хуже, когда автомобиль имеет большой расход топлива, а все проверки ничего не дают. Попробуйте поменять датчик, это помогает, только следите, что бы датчик имел тип, соответствующий вашей системе управления. Попадание масла на чувствительный элемент датчика приводит к нарушению в его показаниях. Масло может попадать через систему рециркуляции картерных газов, если уровень масла в двигателе превышает максимум. В этом случае промывка чувствительного элемента спиртом поможет восстановить работоспособность датчика. 7. Датчик положения коленчатого вала Датчик положения коленчатого вала индукционного типа устанавливается рядом со специальным диском, жестко укрепленным на коленчатом вале. Вместе с ним датчик обеспечивает угловую синхронизацию работы блока управления. Пропуск двух зубьев из 60 на спец-диске позволяет системе определить ВМТ 1-ого или 4-ого цилиндра. Зазор между датчиком и вершиной зуба спец-диска находится в пределах 0,8-1,0 мм. Сопротивление обмотки датчика 880-900 Ом. Для снижения уровня помех провод с датчика коленчатого вала защищен экраном. После включения зажигания управляющая программа блока ожидает прихода импульсов синхронизации с датчика положения коленчатого вала. Блок выдает импульсы для открытия топливных форсунок и импульсы для модуля зажигания только после синхронизации своей работы с процессом вращения коленчатого вала. Синхронизация означает, что управляющая программа правильно определяет все 58 зубьев с датчика и видит пропуск двух зубьев в расчетном временном диапазоне. Запуск двигателя и его стабильная работа определяется четкой синхронизацией импульсов с датчика положения коленчатого вала и импульсов, управляющих открытием форсунок и модулем зажигания. Блок управления определяет сбои в системе синхронизации и пытается пересинхронизировать процесс управления. Нарушение синхронизации приводят к сбоям в топливоподаче и системе зажигания как минимум на двух тактах работы двигателя. Сам датчик положения коленчатого вала является достаточно надежным устройством, но некачественно изготовленный спец-диск может проворачиваться по внутреннему соединению. В этом случае двигатель невозможно завести - происходит потеря синхронизации или смещение метки ВМТ (пропуск двух зубьев) относительно ее фактического положения. Визуальный осмотр позволяет определить это достаточно быстро. Установка метки ВМТ 1-ого цилиндра на двигателе соответствует установке места пропусков двух зубьев спец-диска на 114 гр.п.к.в. по ходу вращения коленчатого вала от места положения датчика (19 зубьев от датчика до пропущенных зубьев). Отсутствие синхронизации легко определяется. Тестер не отображает изменение оборотов вращения коленчатого вала при прокрутке двигателя стартером, в этом случае не подается зажигание, и не работают топливные форсунки, а также не включается бензонасос. Неисправность в датчике положения коленчатого вала приводит к непонятным подергиваниям автомобиля на разных режимах, к провалам в работе двигателя. Эти неисправности могут возникать и по другим причинам: не завернута свеча зажигания, неисправный модуль зажигания, недостаточное давление топлива в системе и др. Попробуйте заменить датчик коленчатого вала, если вы проверили все узлы, а перечисленные выше неисправности имеют место. Масло, подтекающее из-под сальников коленчатого вала, может попадать в систему датчик – спецдиск и приводить к загрязнению датчика и сбоям в системе синхронизации.8. Датчик положения распределительного вала Датчик распределительного вала выдает один импульс на цикл работы двигателя – два оборота коленчатого вала (четыре такта), и позволяет блоку управления определить ВМТ такта сжатия первого цилиндра для синхронизации управления элементами системы с рабочим процессом двигателя. Датчик представляет собой полупроводниковый прибор, принцип действия которого основан на эффекте Холла. Датчик запитывается бортовым напряжением и подключается в систему управления через трехконтактный соединитель. Благодаря датчику распределительного вала подача топлива каждой форсункой осуществляется один раз за два оборота коленчатого вала, что сказывается на точности дозирования и качестве смесеобразования. Это фазированный впрыск топлива. Неисправности в цепях датчика или его выход из строя легко определяются системой самодиагностики блока управления. В этом случае управляющая программа переходит на реализацию попарнопараллельного впрыска топлива, что сказывается на ездовых качествах автомобиля и его экономичности. 9. Датчик скорости автомобиля Датчик скорости автомобиля устанавливается на коробке передач и выдает частотный сигнал – постоянное число импульсов на один оборот колеса. Показания скорости автомобиля могут измениться, если на автомобиле были установлены колеса другого диаметра. Датчик скорости выполняет не только информационную роль (показания спидометра). В зависимости от скорости автомобиля блок управления изменяет режимные параметры. В частности, заданные обороты холостого хода выше на движущемся автомобиле. Режимы, связанные с отсечкой топлива при закрытии дроссельной заслонки на движущемся автомобиле и плавность перехода на холостой ход зависят как от оборотов двигателя, так и от скорости движения. Система проводит диагностику датчика скорости. Но отсутствие в системе сигнала с коробки передач (при неисправном датчике скорости) не позволяет ей определить, двигается автомобиль или стоит. Только наличие больших оборотов двигателя в сочетании с большой нагрузкой (косвенно определяется по расходу воздуха) дают возможность провести диагностику датчика скорости, именно при этих условиях считается, что автомобиль движется, т.е. импульсы с датчика скорости должны присутствовать в системе. В противном случае определяется его неисправность. Неисправность в цепи датчика скорости или выход его из строя могут влиять на снижение оборотов холостого хода при движении автомобиля, приводящих к заглоханию двигателя при резком сбросе нагрузки (выключению передачи), а также к потере динамики разгона при открытии дроссельной заслонки (нажатии педали «газа»). 10. Каталитический нейтрализатор. Датчик L-зонд Каталитический нейтрализатор является пассивным устройством, призванным дожигать остатки несгоревшего топлива в отработавших газах. Для этого в отработавших газах должен присутствовать окислитель, т.е. кислород. Другим словами, эффективная работа нейтрализатора, устанавливаемого на отечественных автомобилях, требует стехиометрического состава смеси, подаваемого в цилиндры двигателя. Это означает, что воздуха и топлива должно быть столько, что при полном их сгорании образовывались вода и углекислый газ. “Такими выхлопными газами можно дышать.” Однако, содержание кислорода в воздухе зависит от погоды, условий местности (город, деревня), влажность и т.д. Для компенсации этого в системе управления есть датчик L-зонд. По его показаниям и проводится коррекция топливоподачи. Его показания в данный момент и определяют отличие состава смеси от стехиометрии (бедная или богатая смесь), а система управления автоматически добавляет или уменьшает топливоподачу. Датчик кислорода установлен в выпускной системе двигателя и служит для определения наличия кислорода в отработавших газах. На поверхности датчика происходит реакция окисления несгоревшего топлива, эта поверхность служит своего рода катализатором этой реакции. Специальный слой на поверхности датчика способен отдавать или восстанавливать ионы кислорода. Разность концентрации кислорода в атмосферном воздухе и на поверхности датчика и является причиной меняющегося выходного напряжения датчика. В богатой смеси топливо окисляется за счет кислорода на поверхности датчика, кислород удаляется с поверхности, напряжение растет. В бедной смеси (избыток воздуха) поверхность восстанавливает кислород - напряжение падает. Изменение выходного напряжения датчика связано с изменением концентрации кислорода на поверхности датчика, вызванного процессами окисления несгоревшего топлива в отработавших газах. Поэтому возможны на первый взгляд непонятные вещи: в богатой смеси датчик показывает бедную смесь или в бедной смеси богатую. В первом случае поверхность датчика загрязнена сажей, и реакции окисления не происходит. Во втором случае, загрязнен вход жгута проводов датчика, через который обеспечивается сообщение с атмосферным воздухом. Реакции, проходящие на поверхности датчика, происходят при высоких температурах не менее 350°С. Поэтому датчик снабжен внутренним нагревателем, который после пуска двигателя ускоряет прогрев датчика. Блок управления имеет встроенную модель прогрева датчика, по ней он и определяет готовность его к работе. Иногда в системе возникает ошибка, связанная с датчиком кислорода, которая затем пропадает. Есть вероятность, что это вызвано неправильной работой модели. Система считает, что датчик готов к работе, но на самом деле его нужно еще немного прогреть. Ошибка возникает и через некоторое время пропадает. А лампа диагностики продолжает еще несколько часов гореть, смущая водителя. Такая же ситуация может происходить и при неисправности цепей управления внутренним нагревателем датчика или его отказе. Выход из строя датчика кислорода не сразу заметен. Первые признаки этой неисправности – раскачка оборотов двигателя на режиме холостого хода и повышенный расход топлива (хотя эти проблемы могут быть вызваны и другими причинами). Неправильная работа контура с L-зондом по корректировке топли- воподачи приводит к возмущениям в работе регулятора, поддерживающего заданные обороты холостого хода. Дальнейшее ухудшение работы датчика L-зонда приводит к невозможности поддержания системой оборотов холостого хода. Хуже дело обстоит с работой исправного датчика на российском топливе. Кислородосодержащие добавки (высокие фракции, спирт, эфир) сдвигают стехиометрию состава смеси в сторону обогащения (увеличивается расход топлива). Пропуски воспламенения в цилиндрах двигателя, связанные с перебоями в зажигании или с плохим качеством топлива, приводят к содержанию в отработавших газах большего количества несгоревшей смеси (повышенного содержания несгоревшего кислорода и топлива). L-зонд определяет бедную смесь, и, как следствие, система увеличивает топливоподачу. В этом случае начинаются проблемы с повышенным расхо- дом топлива, перегревается нейтрализатор, что приводит к его оплавлению и выходу из строя. 11. Модуль зажигания Модуль зажигания отвечает в системе за формирование высоковольтного напряжения на свечах зажигания. Модуль включает в себя высоковольтные ключи (коммутатор и 2 катушки зажигания). Блок управления формирует для модуля низковольтовые управляющие сигналы, согласованные с положением коленчатого вала. Конец сигнала определяет начало искрового зажигания, длительность определяет степень заряда катушки и зависит от напряжения бортовой сети. Выход из строя модуля, как правило, приводит к потере зажигания сразу в двух цилиндрах (вылетает один канал). Это легко проверить пробником искрового разряда. Другое дело, когда модуль зажигания дает на первый взгляд нормальное зажигание, но приводит к сбоям на холодном двигателе (еще хуже - на непрогретом двигателе). Пока двигатель и модуль, располагающийся на двигателе, не прогреются, в работе двигателя наблюдаются сбои, приводящие к рывкам автомобиля (особенно в режиме разгона на пониженной передаче после движения накатом). Запуск холодного двигателя становится проблематичным делом. Автомобиль, оснащенный ЭСУД, более чувствителен к плохой работе системы зажигания, чем автомобиль с карбюратором. Пропуски воспламенения в цилиндрах двигателя в большей степени влияют на успешный запуск холодного двигателя, влияют на повышенный расход топлива, приводят к выходу из строя нейтрализатора, резко ухудшают ездовые качества автомобиля. 12. Датчик детонации Система гашения детонации в автомобиле позволяет гибко корректировать угол опережения зажигания в двигателе, работа которого по каким-то причинам отличается от нормальной. К таким причинам относится и плохое топливо и регулировка клапанов, сбои в системе охлаждения и т.д. Датчик детонации является "ухом" системы, которое выделяет уровень шумов двигателя на определенных частотах. Не вдаваясь в сложную систему обработки сигнала с датчика, можно сказать, что алгоритм гашения детонации является адаптивным (самонастраивающимся) под работу конкретного двигателя. Определение шумности двигателя на определенных (бездетонационных) режимах его работы, определение задержек в углах опережения зажигания по гибкой схеме позволяют системе держать уровень мощности двигателя на характеристиках, заложенных в программное обеспечение блока управления. Система гашения детонации защищает двигатель от возникающих неисправностей. Она не должна работать на исправном двигателе при хорошем топливе. Неисправность датчика или выход за граничные пределы работы системы гашения детонации определяются в системе самодиагностики блока управления. Нужно принять меры по устранению неисправности в работе этой системы. Хорошо отрегулированный двигатель с качественным топливом не должен вызывать повышенный уровень шумов, приводящий к отклонению УОЗ от режимных значений. В случае неисправности датчика, система уходит на резервные таблицы по углу опережения зажигания, что сказывается на ездовых качествах автомобиля. Основной причиной появления детонации в двигателе является повышенная температура в цилиндрах двигателя. Повышение температуры является следствием многих факторов: неисправность самого двигателя, обеднение топливно-воздушной смеси, поступающей в двигатель, плохое качество топлива, неис- правности системы охлаждения и т.д. Система гашения детонации позволяет в широких диапазонах регулировать угол опережения зажигания так, что характерного "стука клапанов" не будет слышно (или характерный стук будет появляться на короткое время). Автомобиль можно эксплуатировать на топливе с пониженным октановым числом при приемлемых ездовых качествах. Появление кода неисправности, связанного с повышенным уровнем шумов в двигателе, нельзя игнорировать, необходимо сделать проверки всех подсистем двигателя. Срабатывание системы гашения детонации приводит к потере мощности двигателя, повышенному расходу топливу и требует необходимых проверок в работе двигателя и его подсистем. Дребезжание не закрепленной защиты картера может быть воспринята системой управления как детонационная работа двигателя. 13. Форсунка Форсунка - устройство, позволяющее дозировать подачу топлива в двигатель. По сути дела это игольчатый клапан, открытием которого управляет электронный блок. Через главное реле система управления подает питание бортовой сети на один вывод форсунки, блок управления замыкает второй вывод на землю на рассчитанный интервал времени. Этот интервал и определяет время открытия форсунки. Считается, что между входом форсунки (топливная рампа) и выходом (впускной коллектор двигателя) поддерживается постоянный перепад давление. Поэтому за одно и то же время открытия форсунки в коллектор подается одинаковая масса топлива. Так ли это? Постоянное давление между входом и выходом форсунки обеспечивается системой топливоподачи, включающей в себя элементы: бензонасос, топливный фильтр, топливную рампу и трубки прямого и обратного трубопровода. Насос способен создать избыточное давление в системе до 6 кг/см2. Регулятор давления срезает это давление и поддерживает его в топливной рампе на уровне 3 кг/см2. Избыток топлива возвращается в топливный бак по обратному трубопроводу. Поскольку при работающем двигателе на выходе форсунки создается разряжение, величина которого зависит от положения дроссельной заслонки, оборотов двигателя, температуры двигателя и воздуха и т.д., то для поддержания постоянного перепада между входом и выходом форсунки требуется компенсация этого разряжения. Для этого регулятор давления на топливной рампе соединен отводной трубкой с впускным коллектором двигателя. Этот, казалось бы, несложный механизм создания правильной дозировки топлива требует исправности всех элементов системы топливоподачи. Измерение давления топлива в рампе с помощью МТ2 позволяет сделать вывод о работе этой системы и ее элементов. Основные проверки исправности топливного насоса и регулятора топлива:
14. Диагностическая линия (К-линия) Блок управления является микропроцессорным устройством и может передавать информацию о своей работе по последовательному каналу связи. Стандартом такого канала в автомобильной электронике является К-линия. Диагностическая линия является средством передачи информации между электронным блоком и внешними устройствами: иммобилизатором, тестирующим оборудованием, приборами диагно- стики. Связь с иммобилизатором устанавливается после включения замка зажигания. Блок управления и иммобилизатор обмениваются по К-линии параметрами, заданными при обучении иммобилизатора. Если параметры соответствуют заданным условиям, электронный блок переходит к штатной работе управляющего алгоритма. Сбои и неполадки в линях связи с иммобилизатором, несовпадение параметров обучения пе- реводят управляющую программу блока в режим, при котором работа двигателя невозможна. К-линия в автомобиле выведена на диагностический разъем, к которому может быть подключен тестер для диагностики работы системы управления. Стандарт программного протокола обмена данными между устройствами и электронным блоком, реализованный в этих устройствах, делает прозрачной работу всех устройств, подключаемых к К – линии. Отсутствие связи между блоком управления и диагностическим прибором может служить признаком неисправности и того, и другого устройства. Если такой связи нет, а уверенность в работоспособности тестера не вызывает сомнений, то первым делом следует проверить диагностическую цепь. Сначала нужно убедиться, что есть питание бортовой сети на блоке управления и цепь К-линии от блока управления доходит до диагностического разъема. Напряжение на клемме К-линии диагностического разъема при исправной цепи равно напряжению бортовой сети. Поскольку цепь К-линии подведена к диагностический разъему через разъем иммобилизатора, то проверка цепи должна проводиться с учетом исправности иммобилизатора. Если функционально иммобилизатор не задействован в системе, лучше всего соединить напрямую провода (вход и выход К-линии) с разъема иммобилизатора.
|
||||||||||
Home | About | Services | Reviews | News | Contact Copyright © AvtoSL Journal
|